

YIELDS

Definition:	stellar yie	lds (Tinsley 1980)
	т р _{іт}	mass of new elements ejected
	m	initial mass
	P _{im}	mass fraction of new elements ejected
The yields depends on all physical assumptions in models		

One should not start by changing the IMF !

⁴<u>He:</u> Depend on mass loss (WR) mixing M_{BH} cutoff mass, etc...

$\Delta Y/\Delta O$: Y and O do not depend on the same mass range

Hirschi et al. 2004

<u>³Не:</u>

Expectations: ³He/⁴He with t or [O/H], with R(kpc) (cf. models by Tosi)

Obs: no differences in lunar soils constant with [O/H], R(kpc), level of WMAP. but 7 PNe with standard ³He yields

Destruction of He-3 in >90% of 1-2 M_{SUN} Does some mass range produce ³He and some other destroy it ? Massive stars destroy ³He. Destruction compensates for creation ?

Thermohaline mixing ³He + ³He \rightarrow ⁴He + 2 p Slight μ inversion may be a solution. The only solution ? ⁷Li:

Observations: Too low by a factor of 3 with respect to WMAP

A(Li)= f(M, Z, age, rotation, pre-MS, disk....)

Facts and questions:

- ~flat with respect to [Fe/H] and then up to T Tauri Main contributors to Li ? Li destroyed in massive stars.
- Evolutionary effects: A(Li) goes slightly up and down observed in GC → age dependence
- Teff scales and consequences for Li

Li in RGB, AGB, super-AGB: mass loss

- Evidences of extra-mixing near RGB bump (add. Depletion
- 1% of GK giants are Li-ric
- Large fraction of C-stars with high L
- Li rich AGB relation to CEMP (Li-rich) end of Spite plateau Mechanisms:
- Hot-bottom burning
 Cameron-Fowler process
 Thermohaline mixing
 Parametrized turbulence

- Pre-galactic Li depletion ? No, similarity halo - ω Cen

- Atomic diffusion, gravitational settling
 ω Cen: age scatter ~5 Gyr → no difference
 → no diffusion
- Li more depleted in planets hosts (solar type) ?
 No pollution, but exceptions (Li-6)
 Infall of planets → mixing. Role of pre-MS evolution:
 relation to initial rotation, disk lifetimes.

-Differences according clusters. Related to richness, binary frequencies, average rot. velocities ? The 2 components of a binary have different A(Li) (talk by M. Spite)